5.5 The Substitution Rule/33: Difference between revisions
No edit summary |
No edit summary |
||
| Line 18: | Line 18: | ||
&= \int (u^{\frac{1}{2}})du \\[2ex] | &= \int (u^{\frac{1}{2}})du \\[2ex] | ||
&= -\frac{2}{3} u + c \\[2ex] | &= -\frac{2}{3} u + c \\[2ex] | ||
&= -\frac{2}{3} (\cot{(x)})^{\frac{3}{2}} + | &= -\frac{2}{3} (\cot{(x)})^{\frac{3}{2}} +C | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 09:19, 16 December 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int {\sqrt{\cot(x)}} \csc^2{(x)}dx }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \cot{(x)} \\[2ex] du &= -csc^2{(x)}dx \\[2ex] -du &= csc^2{(x)}dx \\[2ex] \end{align} }
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}&=-\int {({\sqrt {u}})}du\\[2ex]&=\int (u^{\frac {1}{2}})du\\[2ex]&=-{\frac {2}{3}}u+c\\[2ex]&=-{\frac {2}{3}}(\cot {(x)})^{\frac {3}{2}}+C\end{aligned}}}