5.4 Indefinite Integrals and the Net Change Theorem/9: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
\begin{align}
\begin{align}


f(x) &= x^2 \\[2ex]
\int\left((1-t)(2+t^2)
&= x^3 + (x+1)^3 \\[2ex]
\right)dt=\int(2+t^2-2t-t^3)dt
&= \int_{1}^{5}f(x)\,dx \\[2ex]
=2t+\frac{t^3}{3}-\frac{2t^2}{2}-\frac{t^4}{4}+C = 2t-t^2+\frac{t^3}{3}-\frac{t^4}{4}+C
&= \left(\frac{1}{x^2}\right)




\end{align}
\end{align}
</math>
</math>

Latest revision as of 03:51, 16 December 2022