7.1 Integration By Parts/30: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Tag: Manual revert
Line 25: Line 25:




<math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr    ~~~ = ~~~  \left [ \frac{\left ( r^{2}+4 \right )^{\frac{3}{2}}}{3} - 4\left ( r^{2}+4 \right )^{\frac{1}{2}} \right ]\bigggg|_{0}^{1} </math>
<math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr    ~~~ = ~~~  \left [ \frac{\left ( r^{2}+4 \right )^{\frac{3}{2}}}{3} - 4\left ( r^{2}+4 \right )^{\frac{1}{2}} \right ]\bigg|_{0}^{1} </math>


<math> \left [\frac{\left ( 1 ^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 1 ^{2}+4 \right )^{\frac{1}{2}}  \right ]- \left [ \frac{\left ( 0^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 0^{2}+4 \right )^{\frac{1}{2}} \right ] </math>
<math> \left [\frac{\left ( 1 ^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 1 ^{2}+4 \right )^{\frac{1}{2}}  \right ]- \left [ \frac{\left ( 0^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 0^{2}+4 \right )^{\frac{1}{2}} \right ] </math>


<math> \frac{5^{\frac{3}{2}}}{3}-4\left ( 5 \right )^{\frac{1}{2}}-\left ( \frac{\left ( 4 \right )^{\frac{3}{2}}}{3} - 8\right )      ~~~ = ~~~  \frac{5^{\frac{3}{2}}}{3}-4\sqrt{5}-\frac{4^{\frac{3}{2}}}{3}-8  ~~~\approx~~~0.116 </math>
<math> \frac{5^{\frac{3}{2}}}{3}-4\left ( 5 \right )^{\frac{1}{2}}-\left ( \frac{\left ( 4 \right )^{\frac{3}{2}}}{3} - 8\right )      ~~~ = ~~~  \frac{5^{\frac{3}{2}}}{3}-4\sqrt{5}-\frac{4^{\frac{3}{2}}}{3}-8  ~~~\approx~~~0.116 </math>

Revision as of 16:44, 13 December 2022



Now, we need to substitute u back