7.1 Integration By Parts/30: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 29: Line 29:
<math> \left [\frac{\left ( 1 ^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 1 ^{2}+4 \right )^{\frac{1}{2}}  \right ]- \left [ \frac{\left ( 0^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 0^{2}+4 \right )^{\frac{1}{2}} \right ] </math>
<math> \left [\frac{\left ( 1 ^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 1 ^{2}+4 \right )^{\frac{1}{2}}  \right ]- \left [ \frac{\left ( 0^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 0^{2}+4 \right )^{\frac{1}{2}} \right ] </math>


<math> \frac{5^{\frac{3}{2}}}{3}-4\left ( 5 \right )^{\frac{1}{2}}-\left ( \frac{\left ( 4 \right )^{\frac{3}{2}}}{3} + 8\right )      ~~~ = ~~~  \frac{5^{\frac{3}{2}}}{3}-4\sqrt{5}-\frac{4^{\frac{3}{2}}}{3}+8  </math>
<math> \frac{5^{\frac{3}{2}}}{3}-4\left ( 5 \right )^{\frac{1}{2}}-\left ( \frac{\left ( 4 \right )^{\frac{3}{2}}}{3} - 8\right )      ~~~ = ~~~  \frac{5^{\frac{3}{2}}}{3}-4\sqrt{5}-\frac{4^{\frac{3}{2}}}{3}-8  </math>

Revision as of 12:08, 13 December 2022



Now, we need to substitute u back