7.1 Integration By Parts/17: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Created page with "<math>\int_{0}^{1}\left(3+x\sqrt{x}\right)dx<math>")
 
No edit summary
 
Line 1: Line 1:
<math>\int_{0}^{1}\left(3+x\sqrt{x}\right)dx<math>
<math>\int\left(e^{2{\theta}}\right)sin{3\theta}  d{\theta}</math>
 
First:
 
<math>u={\sin{(3\theta)}}</math> 
<math>du={3\cos{(3\theta)}} d{\theta}</math> 
<math>dv=\left(e^{2{\theta}}\right)</math>
<math>v=\frac{1}{2}\left(e^{2{\theta}}\right)</math>
 
Then:
<math>I=\int\left(e^{2{\theta}}\right)\sin{3\theta}  d{\theta}=\frac{1}{2}\left(e^{2{\theta}}\right)*{\sin{(3\theta)}}-\frac{3}{2}\int\left(e^{2{\theta}}\right)\cos{3\theta}  d{\theta}</math>
 
Next: let 
 
<math>U={\cos{(3\theta)}}</math>
 
<math>dU={3\sin{(3\theta)}} d{\theta}</math>
 
<math>dV=\left(e^{2{\theta}}\right) d{\theta}</math>
 
<math>V=\frac{1}{2}\left(e^{2{\theta}}\right)</math> to get
 
<math>\int\left(e^{2{\theta}}\right)\cos{3\theta}  d{\theta}=\frac{1}{2}\int\left(e^{2{\theta}}\right)\cos{3\theta}  d{\theta}+\frac{3}{2}\int\left(e^{2{\theta}}\right)\sin{3\theta}  d{\theta}</math> substituting in the previous formula gives
 
<math>I=\frac{1}{2}\left(e^{2{\theta}}\right)\sin{3\theta}-\frac{3}{4}\left(e^{2{\theta}}\right)\cos{3\theta}-\frac{9}{4}\int\left(e^{2{\theta}}\right)sin{3\theta}  d{\theta}</math>
 
<math>=\frac{1}{2}\left(e^{2{\theta}}\right)sin{3\theta}-\frac{3}{4}\left(e^{2{\theta}}\right)cos{3\theta}-\frac{9}{4}I</math>
 
Then:
<math>\frac{13}{4}I=\frac{1}{2}\left(e^{2{\theta}}\right)sin{3\theta}-\frac{3}{4}\left(e^{2{\theta}}\right)cos{3\theta}+C</math>,
 
Hence,<math>I=\frac{1}{13}\left(e^{2{\theta}}\right)2sin{3\theta}-{3cos3\theta}+C</math>,
 
Where
<math>C=\frac{4}{13}C</math>

Latest revision as of 05:23, 6 December 2022

First:

Then:

Next: let

to get

substituting in the previous formula gives

Then: ,

Hence,,

Where