7.1 Integration By Parts/17: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math>\int_{0}^{1}\left(3+x\sqrt{x}\right)dx<math>") |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\ | <math>\int\left(e^{2{\theta}}\right)sin{3\theta} d{\theta}</math> | ||
First: | |||
<math>u={\sin{(3\theta)}}</math> | |||
<math>du={3\cos{(3\theta)}} d{\theta}</math> | |||
<math>dv=\left(e^{2{\theta}}\right)</math> | |||
<math>v=\frac{1}{2}\left(e^{2{\theta}}\right)</math> | |||
Then: | |||
<math>I=\int\left(e^{2{\theta}}\right)\sin{3\theta} d{\theta}=\frac{1}{2}\left(e^{2{\theta}}\right)*{\sin{(3\theta)}}-\frac{3}{2}\int\left(e^{2{\theta}}\right)\cos{3\theta} d{\theta}</math> | |||
Next: let | |||
<math>U={\cos{(3\theta)}}</math> | |||
<math>dU={3\sin{(3\theta)}} d{\theta}</math> | |||
<math>dV=\left(e^{2{\theta}}\right) d{\theta}</math> | |||
<math>V=\frac{1}{2}\left(e^{2{\theta}}\right)</math> to get | |||
<math>\int\left(e^{2{\theta}}\right)\cos{3\theta} d{\theta}=\frac{1}{2}\int\left(e^{2{\theta}}\right)\cos{3\theta} d{\theta}+\frac{3}{2}\int\left(e^{2{\theta}}\right)\sin{3\theta} d{\theta}</math> substituting in the previous formula gives | |||
<math>I=\frac{1}{2}\left(e^{2{\theta}}\right)\sin{3\theta}-\frac{3}{4}\left(e^{2{\theta}}\right)\cos{3\theta}-\frac{9}{4}\int\left(e^{2{\theta}}\right)sin{3\theta} d{\theta}</math> | |||
<math>=\frac{1}{2}\left(e^{2{\theta}}\right)sin{3\theta}-\frac{3}{4}\left(e^{2{\theta}}\right)cos{3\theta}-\frac{9}{4}I</math> | |||
Then: | |||
<math>\frac{13}{4}I=\frac{1}{2}\left(e^{2{\theta}}\right)sin{3\theta}-\frac{3}{4}\left(e^{2{\theta}}\right)cos{3\theta}+C</math>, | |||
Hence,<math>I=\frac{1}{13}\left(e^{2{\theta}}\right)2sin{3\theta}-{3cos3\theta}+C</math>, | |||
Where | |||
<math>C=\frac{4}{13}C</math> |
Latest revision as of 05:23, 6 December 2022
First:
Then:
Next: let
to get
substituting in the previous formula gives
Then: ,
Hence,,
Where