7.1 Integration By Parts/24: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 22: Line 22:
du&=6 \quad \quad v=sin(x)
du&=6 \quad \quad v=sin(x)
\end{aligned}}
\end{aligned}}
=x^3\sin(x)+3x^2\cos(x)-\bigg[6x\sin(x)-\int_{0}^{\pi} 6\sin(x)\,dx\bigg]= x^3sin(x)+3x^2\cos(x)-6x\sin(x)-6\cos(x)|_{0}^{\pi}
=x^3\sin(x)+3x^2\cos(x)-\bigg[6x\sin(x)-\int_{0}^{\pi} 6\sin(x)\,dx\bigg]= x^3sin(x)+3x^2\cos(x)-6x\sin(x)-6\cos(x)\bigg|_{0}^{\pi}  
\end{align}
</math>
<math>
\begin{align}
&=[(\pi^3\cdot\sin(\pi)+3(\pi)^2\cdot\cos(\pi)-6(\pi)\cdot\sin(\pi)-6\cos(\pi))-(0^3\cdot\sin(0)+3(0)^2\cdot\cos(0)-6(0)\cdot\sin(0)-6\cos(0))] \\
&=[(\pi\cdot 0 +3\pi^2 \cdot -1 -6 \cdot -1)+6 =-3\pi^2+6+6 = -3\pi^2+12 = -17.60
\end{align}
\end{align}
</math>
</math>

Latest revision as of 20:31, 1 December 2022