From Mr. V Wiki Math
|
|
Line 54: |
Line 54: |
| \begin{align} | | \begin{align} |
|
| |
|
| -\int_{}^{}\tan^{n-2}(x)dx
| | \int_{}^{}\tan^{n-2}(x)dx |
|
| |
|
| \end{align} | | \end{align} |
Revision as of 04:32, 30 November 2022
Prove
Solving for
</math>
\begin{align}
\frac{\tan^{n-1}(x)}{n-1} = \frac{(n-1)}{n-1} \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx
\end{align}
</math>
</math>
\begin{align}
\int_{}^{}\tan^{n-2}(x)dx
\end{align}
</math>
</math>
\begin{align}
= \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx
\end{align}
</math>
Note: