7.1 Integration By Parts/49: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 47: | Line 47: | ||
\frac{\tan^{n-1}(x)}{n-1} = \frac{(n-1)}{n-1} \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx | \frac{\tan^{n-1}(x)}{n-1} = \frac{(n-1)}{n-1} \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx | ||
Bring down -\int_{}^{}\tan^{n-2}(x)dx | |||
\end{align} | |||
</math> | |||
Bring down | |||
</math> | |||
\begin{align} | |||
-\int_{}^{}\tan^{n-2}(x)dx | |||
= \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx | = \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx | ||
Revision as of 04:30, 30 November 2022
Prove
Solving for
</math> \begin{align}
\frac{\tan^{n-1}(x)}{n-1} = \frac{(n-1)}{n-1} \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx
\end{align} </math>
Bring down
</math> \begin{align}
-\int_{}^{}\tan^{n-2}(x)dx = \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx
\end{align} </math>
Note: