7.1 Integration By Parts/49: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 32: Line 32:
\tan^{n-1}(x)  - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx \\[2ex]
\tan^{n-1}(x)  - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx \\[2ex]


<math>
\begin{align}
&+(n-2)\int_{}^{} \sec^{2}(x)dx                                                  \quad &&&+(n-2)\int_{}^{} \sec^{2}(x)dx
\end{align}
</math>


\end{align}
\end{align}

Revision as of 04:18, 30 November 2022

Prove

Solving for

Note: