7.1 Integration By Parts/49: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 32: Line 32:
&= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex]
&= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex]


\end{align}
</math>
Note:
<math>
\begin{align}
\tan^{2}(x) = \sec^{2}(x)-1
\end{align}
\end{align}
</math>
</math>

Revision as of 04:07, 30 November 2022

Prove

Solving for

Note: