7.1 Integration By Parts/50: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 48: Line 48:


(n-1)\int_{}^{} \sec^{n}(x)dx= \sec^{2}(x)\tan(x) + (n-2) \int_{}^{} \sec^{n-2}(x)dx \\[2ex]
(n-1)\int_{}^{} \sec^{n}(x)dx= \sec^{2}(x)\tan(x) + (n-2) \int_{}^{} \sec^{n-2}(x)dx \\[2ex]
&= \frac{\sec^{n-2}(x) \tan(x)}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}(x)dx
&= \frac{\sec^{n-2}(x) \tan(x)}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}(x)dx \\[2ex]
 
\end{align}
\end{align}
</math>
</math>

Revision as of 03:59, 30 November 2022

Prove