From Mr. V Wiki Math
|
|
Line 48: |
Line 48: |
|
| |
|
| (n-1)\int_{}^{} \sec^{n}(x)dx= \sec^{2}(x)\tan(x) + (n-2) \int_{}^{} \sec^{n-2}(x)dx \\[2ex] | | (n-1)\int_{}^{} \sec^{n}(x)dx= \sec^{2}(x)\tan(x) + (n-2) \int_{}^{} \sec^{n-2}(x)dx \\[2ex] |
| &= \frac{\sec^{n-2}(x) \tan(x)}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}(x)dx | | &= \frac{\sec^{n-2}(x) \tan(x)}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}(x)dx \\[2ex] |
| | |
| \end{align} | | \end{align} |
| </math> | | </math> |
Revision as of 03:59, 30 November 2022
Prove