7.1 Integration By Parts/50: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 32: | Line 32: | ||
\int_{}^{} \sec^{n}(x)dx = \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n}(x)dx + (n-2) \int_{}^{}\sec^{n-2}(x)dx | \int_{}^{} \sec^{n}(x)dx = \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n}(x)dx + (n-2) \int_{}^{}\sec^{n-2}(x)dx | ||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
+(n-2)\int_{}^{} \sec^{2}(x)dx \quad +(n-2)\int_{}^{} \sec^{2}(x)dx | +(n-2)\int_{}^{} \sec^{2}(x)dx \quad +(n-2)\int_{}^{} \sec^{2}(x)dx | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 00:28, 30 November 2022
Prove