7.1 Integration By Parts/50: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 32: Line 32:


\int_{}^{} \sec^{n}(x)dx = \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n}(x)dx + (n-2) \int_{}^{}\sec^{n-2}(x)dx
\int_{}^{} \sec^{n}(x)dx = \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n}(x)dx + (n-2) \int_{}^{}\sec^{n-2}(x)dx
\end{align}
</math>
<math>
\begin{align}
+(n-2)\int_{}^{} \sec^{2}(x)dx                                                  \quad +(n-2)\int_{}^{} \sec^{2}(x)dx
+(n-2)\int_{}^{} \sec^{2}(x)dx                                                  \quad +(n-2)\int_{}^{} \sec^{2}(x)dx


\end{align}
\end{align}
</math>
</math>

Revision as of 00:28, 30 November 2022

Prove