7.1 Integration By Parts/50: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 22: Line 22:


&= sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n-2}(x) \cdot \tan^{2}(x)\right]dx \\[2ex]
&= sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n-2}(x) \cdot \tan^{2}(x)\right]dx \\[2ex]
&= sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n-2}(x) \cdot \sec^{2}(x)-1 dx \\[2ex]
&= sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n-2}(x) \cdot [\sec^{2}(x)-1]dx \\[2ex]
&= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex]
&= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex]



Revision as of 18:56, 29 November 2022

Prove

sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n-2}(x) \cdot [\sec^{2}(x)-1]dx