7.1 Integration By Parts/50: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 20: | Line 20: | ||
\int_{}^{} \sec^{2}(x) \cdot \sec^{n-2}(x) dx &= \sec^{n-2}(x) \cdot \tan(x) - \int_{}^{} \left[(n-2)\sec^{n-3}(x) \cdot \sec(x)\tan(x)\right]\cdot \tan(x)dx \\[2ex] | \int_{}^{} \sec^{2}(x) \cdot \sec^{n-2}(x) dx &= \sec^{n-2}(x) \cdot \tan(x) - \int_{}^{} \left[(n-2)\sec^{n-3}(x) \cdot \sec(x)\tan(x)\right]\cdot \tan(x)dx \\[2ex] | ||
&= sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n-2}(x) \cdot \tan^{2}(x)\right]dx | |||
&= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex] | &= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex] | ||
&= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex] | &= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex] |
Revision as of 18:48, 29 November 2022
Prove