7.1 Integration By Parts/50: Difference between revisions
No edit summary |
No edit summary |
||
| Line 10: | Line 10: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
&u = \ | &u = \sec^{n-2}(x) \quad dv= \sec^{2}(x)dx \\[2ex] | ||
&du = | &du = (n-2)\sec^{n-3} \cdot \sec(x) \cdot \tan(x) dx \quad v= \tan(x) \\[2ex] | ||
\end{align} | \end{align} | ||
Revision as of 18:33, 29 November 2022
Prove Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{} \sec^{n}(x)dx = \frac{\tan(x) \cdot \sec^{n-2}(x)}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}(x)dx }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{} \sec^{n}(x)dx = \int_{}^{} \sec^{2}(x) \cdot \sec^{n-2}(x) dx }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} &u = \sec^{n-2}(x) \quad dv= \sec^{2}(x)dx \\[2ex] &du = (n-2)\sec^{n-3} \cdot \sec(x) \cdot \tan(x) dx \quad v= \tan(x) \\[2ex] \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{}^{} \left(\ln(x)^{n}\right)dx &= x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex] &= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex] &= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex] \end{align} }