7.1 Integration By Parts/50: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Prove | Prove | ||
<math> | <math> | ||
\int_{}^{} \sec^{n}x = \frac{\tan(x) \cdot \sec^{n-2}(x)}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}(x)dx | \int_{}^{} \sec^{n}(x)dx = \frac{\tan(x) \cdot \sec^{n-2}(x)}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}(x)dx | ||
</math> | </math> | ||
<math> | <math> | ||
\int_{}^{} \ | \int_{}^{} \sec^{n}(x)dx | ||
</math> | </math> | ||
Revision as of 18:28, 29 November 2022
Prove