7.1 Integration By Parts/51b: Difference between revisions
Jump to navigation
Jump to search
m (Protected "7.1 Integration By Parts/51b" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
No edit summary |
||
Line 11: | Line 11: | ||
du & = \tfrac{2\ln{(x)}}{x}dx & v &= x | du & = \tfrac{2\ln{(x)}}{x}dx & v &= x | ||
\end{aligned} | \end{aligned} | ||
} \\ [ | } \\ [2ex] | ||
&= x\ln^{3}(x) -3\left[\ln^{2}{(x)}\cdot x - 2\int\ln{(x)}dx\right] \\ [1ex] | &= x\ln^{3}(x) -3\left[\ln^{2}{(x)}\cdot x - 2\int\ln{(x)}dx\right] \\ [1ex] | ||
Line 18: | Line 18: | ||
u & = \ln{(x)} & dv &= dx \\[0.6ex] | u & = \ln{(x)} & dv &= dx \\[0.6ex] | ||
du & = \tfrac{1}{x}dx & v &= x | du & = \tfrac{1}{x}dx & v &= x | ||
\end{aligned}} \\ [ | \end{aligned}} \\ [2ex] | ||
&= x\ln^{3}(x) -3x\ln^{2}{(x)} + 6\left[\ln{(x)}\cdot x - \int dx\right] \\[1ex] | &= x\ln^{3}(x) -3x\ln^{2}{(x)} + 6\left[\ln{(x)}\cdot x - \int dx\right] \\[1ex] |
Revision as of 18:14, 29 November 2022