7.1 Integration By Parts/49: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:
\int_{}^{} \left(\tan^{n}(x)\right)dx = \int_{}^{} \left((\tan^{2}x)(\tan^{n-2}x)\right)dx = \int_{}^{} (\sec^{2}(x)-1)\tan^{n-2}(x) dx
\int_{}^{} \left(\tan^{n}(x)\right)dx = \int_{}^{} \left((\tan^{2}x)(\tan^{n-2}x)\right)dx = \int_{}^{} (\sec^{2}(x)-1)\tan^{n-2}(x) dx
= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)-\tan^{n-2}xdx
= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)-\tan^{n-2}xdx
= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x) -\int_{}^{}\tan^{n-2}x


</math>
</math>

Revision as of 18:09, 29 November 2022

Prove