7.1 Integration By Parts/49: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
\int_{}^{} \left(\tan^{n}(x)\right)dx = \int_{}^{} \left((\tan^{2}x)(\tan^{n-2}x)\right)dx = \int_{}^{} (\sec^{2}(x)-1)\tan^{n-2}(x) dx | \int_{}^{} \left(\tan^{n}(x)\right)dx = \int_{}^{} \left((\tan^{2}x)(\tan^{n-2}x)\right)dx = \int_{}^{} (\sec^{2}(x)-1)\tan^{n-2}(x) dx | ||
= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)-\tan^{n-2}xdx | = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)-\tan^{n-2}xdx | ||
= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x) -\int_{}^{}\tan^{n-2}x | |||
</math> | </math> |
Revision as of 18:09, 29 November 2022
Prove