7.1 Integration By Parts/49: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
<math> | <math> | ||
\int_{}^{} \left(\tan^{n}(x)\right)dx = \int_{}^{} \left((\tan^{2}x)(\tan^{n-2}x)\right)dx = \int_{}^{} (\sec^{2}(x)-1)\tan^{n-2}x dx | \int_{}^{} \left(\tan^{n}(x)\right)dx = \int_{}^{} \left((\tan^{2}x)(\tan^{n-2}x)\right)dx = \int_{}^{} (\sec^{2}(x)-1)\tan^{n-2}x dx | ||
&= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x) | &= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx | ||
</math> | </math> |
Revision as of 18:07, 29 November 2022
Prove
Failed to parse (syntax error): {\displaystyle \int_{}^{} \left(\tan^{n}(x)\right)dx = \int_{}^{} \left((\tan^{2}x)(\tan^{n-2}x)\right)dx = \int_{}^{} (\sec^{2}(x)-1)\tan^{n-2}x dx &= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx }