7.1 Integration By Parts/51b: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 14: Line 14:
} \\ [1ex]
} \\ [1ex]


&= x\ln(x)^3 -3\left[\ln^{2}{(x)}\cdot x - 2\int\ln{(x)}dx\right] \\ [1ex]
&= x\ln^{3}(x) -3\left[\ln^{2}{(x)}\cdot x - 2\int\ln{(x)}dx\right] \\ [1ex]
&= x\ln(x)^3 -3x\ln^{2}{(x)} + \underbrace{6\int\ln{(x)}dx}_{
&= x\ln^{3}(x) -3x\ln^{2}{(x)} + \underbrace{6\int\ln{(x)}dx}_{
\begin{aligned}
\begin{aligned}
u & = \ln{(x)}  & dv &= dx \\[0.6ex]
u & = \ln{(x)}  & dv &= dx \\[0.6ex]
Line 21: Line 21:
\end{aligned}} \\ [1ex]
\end{aligned}} \\ [1ex]


&= x\ln(x)^3 -3x\ln^{2}{(x)} + 6\left[\ln{(x)}\cdot x - \int dx\right] \\[1ex]
&= x\ln^{3}(x) -3x\ln^{2}{(x)} + 6\left[\ln{(x)}\cdot x - \int dx\right] \\[1ex]
&= x\ln(x)^3 -3x\ln^{2}{(x)} + 6x\ln{(x)} - 6x + C
&= x\ln^{3}(x) -3x\ln^{2}{(x)} + 6x\ln{(x)} - 6x + C





Revision as of 18:01, 29 November 2022