7.1 Integration By Parts/51b: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 14: | Line 14: | ||
} \\ [1ex] | } \\ [1ex] | ||
&= x\ln(x) | &= x\ln^{3}(x) -3\left[\ln^{2}{(x)}\cdot x - 2\int\ln{(x)}dx\right] \\ [1ex] | ||
&= x\ln(x) | &= x\ln^{3}(x) -3x\ln^{2}{(x)} + \underbrace{6\int\ln{(x)}dx}_{ | ||
\begin{aligned} | \begin{aligned} | ||
u & = \ln{(x)} & dv &= dx \\[0.6ex] | u & = \ln{(x)} & dv &= dx \\[0.6ex] | ||
Line 21: | Line 21: | ||
\end{aligned}} \\ [1ex] | \end{aligned}} \\ [1ex] | ||
&= x\ln(x) | &= x\ln^{3}(x) -3x\ln^{2}{(x)} + 6\left[\ln{(x)}\cdot x - \int dx\right] \\[1ex] | ||
&= x\ln(x) | &= x\ln^{3}(x) -3x\ln^{2}{(x)} + 6x\ln{(x)} - 6x + C | ||
Revision as of 18:01, 29 November 2022