7.1 Integration By Parts/51b: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 12: Line 12:
du & = \tfrac{2\ln{(x)}}{x}dx  & v &= x
du & = \tfrac{2\ln{(x)}}{x}dx  & v &= x
\end{aligned}
\end{aligned}
} \\
} \\ [0.8ex]


&= x\ln(x)^3 -3\left[\ln^{2}{(x)}\cdot x - 2\int\ln{(x)}dx\right] \\
&= x\ln(x)^3 -3\left[\ln^{2}{(x)}\cdot x - 2\int\ln{(x)}dx\right] \\ [0.8ex]
\end{align}
\end{align}


</math>
</math>

Revision as of 17:54, 29 November 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Use exercise 47 to evaluate} \int(\ln{x})^3dx }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Exercise 47: } x(\ln{x})^n-n\int(\ln{x})^{n-1}dx }

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int \ln(x)^{3}dx&=x\ln(x)^{3}-\underbrace {3\int \ln(x)^{2}dx} _{\begin{aligned}u&=\ln ^{2}{(x)}&dv&=dx\\[0.6ex]du&={\tfrac {2\ln {(x)}}{x}}dx&v&=x\end{aligned}}\\[0.8ex]&=x\ln(x)^{3}-3\left[\ln ^{2}{(x)}\cdot x-2\int \ln {(x)}dx\right]\\[0.8ex]\end{aligned}}}