7.1 Integration By Parts/30: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 22: | Line 22: | ||
Now, we need to substitute u back | Now, we need to substitute u back | ||
<math>\frac{\left ( r^{2}+4 \right )^{\frac{3}{2}}}{3} - 4\left ( r^{2}+4 \right )^{\frac{1}{2}} + C </math> | <math>\frac{\left ( r^{2}+4 \right )^{\frac{3}{2}}}{3} - 4\left ( r^{2}+4 \right )^{\frac{1}{2}} + C </math> | ||
<math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr ~~~ = ~~~ \left [ \frac{\left ( r^{2}+4 \right )^{\frac{3}{2}}}{3} - 4\left ( r^{2}+4 \right )^{\frac{1}{2}} \right ] </math> | <math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr ~~~ = ~~~ \left [ \frac{\left ( r^{2}+4 \right )^{\frac{3}{2}}}{3} - 4\left ( r^{2}+4 \right )^{\frac{1}{2}} \right ] </math> |
Revision as of 12:39, 29 November 2022
Now, we need to substitute u back