7.1 Integration By Parts/30: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 22: Line 22:
Now, we need to substitute u back
Now, we need to substitute u back


<math>\frac{\left ( r^{2}+4 \right )^{\frac{3}{2}}}{3} - 4\left ( r^{2}+4 \right )^{\frac{1}{2}} + C </math>
<math>\frac{\left ( r^{2}+4 \right )^{\frac{3}{2}}}{3} - 4\left ( r^{2}+4 \right )^{\frac{1}{2}} + C </math>\
 
 


<math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr    ~~~ = ~~~  \left [ \frac{\left ( r^{2}+4 \right )^{\frac{3}{2}}}{3} - 4\left ( r^{2}+4 \right )^{\frac{1}{2}} \right ] </math>
<math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr    ~~~ = ~~~  \left [ \frac{\left ( r^{2}+4 \right )^{\frac{3}{2}}}{3} - 4\left ( r^{2}+4 \right )^{\frac{1}{2}} \right ] </math>

Revision as of 12:39, 29 November 2022



Now, we need to substitute u back

\