7.1 Integration By Parts/30: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 16: | Line 16: | ||
<math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr ~~~ = ~~~ \int_{0}^{1}\frac{r}{2\sqrt{u}}\cdot du ~~~ = ~~~ \int_{0}^{1}\frac{u-4}{2\sqrt{u}}\cdot du ~~~ = ~~~ \frac{}{}\frac{1}{2} \int_{0}^{1} \left (\frac{u}{\sqrt{u}} - \frac{4}{\sqrt{u}} \right ) \cdot du ~~~ = ~~~ </math> | <math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr ~~~ = ~~~ \int_{0}^{1}\frac{r}{2\sqrt{u}}\cdot du ~~~ = ~~~ \int_{0}^{1}\frac{u-4}{2\sqrt{u}}\cdot du ~~~ = ~~~ \frac{}{}\frac{1}{2} \int_{0}^{1} \left (\frac{u}{\sqrt{u}} - \frac{4}{\sqrt{u}} \right ) \cdot du ~~~ = ~~~ </math> | ||
<math> \frac{1}{2} \left [ \left (\frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right ) - \left ( \frac{u^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} \right ) \right ] ~~~ = ~~~ \frac{1}{2} \left [ \left (\frac{u^{\frac{3}{2}}}{\frac{3}{2}} \right ) - 4\left ( \frac{u^{\frac{1}{2} }}{\frac{1}{2}} \right ) \right ] </math> | <math> \frac{1}{2} \left [ \left (\frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right ) - \left ( \frac{u^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} \right ) \right ] ~~~ = ~~~ \frac{1}{2} \left [ \left (\frac{u^{\frac{3}{2}}}{\frac{3}{2}} \right ) - 4\left ( \frac{u^{\frac{1}{2} }}{\frac{1}{2}} \right ) ~~~ = ~~~ \frac{u^{\frac{3}{2}}}{3} - 4u^{\frac{1}{2}} \right ] </math> |
Revision as of 12:24, 29 November 2022