7.1 Integration By Parts/11: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
\int \text {arctan(4t)}dt = \text {tarctan(4t)}-4\int \frac{t}{1+16t^{2}} dt\\[1ex] | \int \text {arctan(4t)}dt = \text {tarctan(4t)}-4\int \frac{t}{1+16t^{2}} dt\\[1ex] | ||
&= \pi\left[4x-x^2+\frac{1}{12}x^3\right]\Bigg|_1^2 \\[ | &= \pi\left[4x-x^2+\frac{1}{12}x^3\right]\Bigg|_1^2 \\[1ex] | ||
&= \pi\left[\left(4(2)-(2)^2+\frac{1}{12}(2)^3\right)-\left(4(1)-(1)^2+\frac{1}{12}(1)^3\right)\right] \\[2ex] | &= \pi\left[\left(4(2)-(2)^2+\frac{1}{12}(2)^3\right)-\left(4(1)-(1)^2+\frac{1}{12}(1)^3\right)\right] \\[2ex] | ||
&= \pi\left[\left(8-4+\frac{8}{12}\right)-\left(4-1+\frac{1}{12}\right)\right] \\[2ex] | &= \pi\left[\left(8-4+\frac{8}{12}\right)-\left(4-1+\frac{1}{12}\right)\right] \\[2ex] |
Revision as of 04:58, 29 November 2022