7.1 Integration By Parts/54: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 19: Line 19:
<math>
<math>


\int_{1}^{5}\left(5\ln(x) -x\ln(x) \right)dx = {\color{NavyBlue}\int_{1}^{5} \left(5\ln(x) \right)dx} - \int_{1}^{5} \left(x\ln(x) \right)dx =25\ln(5)-20 - \left(\frac{25}{2}\ln(5) - 6 \right) = \frac{25}{2} \ln(5) -14
\int_{1}^{5}\left(5\ln(x) -x\ln(x) \right)dx = {\color{NavyBlue}\int_{1}^{5} \left(5\ln(x) \right)dx} - {\color{RedOrange}\int_{1}^{5} \left(x\ln(x) \right)dx } =25\ln(5)-20 - \left(\frac{25}{2}\ln(5) - 6 \right) = \frac{25}{2} \ln(5) -14


</math>
</math>
Line 34: Line 34:


<math>
<math>
\int_{1}^{5} \left(x\ln(x) \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \int_{1}^{5} \left(\frac{x^2}{2x} \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \frac{1}{2}\int_{1}^{5} \left(x \right)dx = \frac{1\ln(1)}{2}-\frac{25\ln(5)}{2} -\left(\frac{1}{2}\right) \left( \frac{x^2}{2} \right) \bigg|_{1}^{5} = 0-\frac{25}{2}\ln(5) -\frac{1}{2}\left(\frac{25-1}{2}\right) = \frac{25}{2}\ln(5) - 6
{\color{RedOrange}\int_{1}^{5} \left(x\ln(x) \right)dx }= \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \int_{1}^{5} \left(\frac{x^2}{2x} \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \frac{1}{2}\int_{1}^{5} \left(x \right)dx = \frac{1\ln(1)}{2}-\frac{25\ln(5)}{2} -\left(\frac{1}{2}\right) \left( \frac{x^2}{2} \right) \bigg|_{1}^{5} = 0-\frac{25}{2}\ln(5) -\frac{1}{2}\left(\frac{25-1}{2}\right) = \frac{25}{2}\ln(5) - 6


</math>
</math>

Revision as of 04:25, 29 November 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y=5\ln(x) , y=x\ln(x) }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} 5\ln(x) &=x\ln(x)\\[1ex] &x=5 \\[1ex] &x=1 \\[1ex] 5\ln(2) > 2\ln(2) \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{1}^{5}\left(5\ln(x) -x\ln(x) \right)dx = {\color{NavyBlue}\int_{1}^{5} \left(5\ln(x) \right)dx} - {\color{RedOrange}\int_{1}^{5} \left(x\ln(x) \right)dx } =25\ln(5)-20 - \left(\frac{25}{2}\ln(5) - 6 \right) = \frac{25}{2} \ln(5) -14 }

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\color {RedOrange}\int _{1}^{5}\left(x\ln(x)\right)dx}={\frac {x^{2}\ln(x)}{2}}{\bigg |}_{1}^{5}-\int _{1}^{5}\left({\frac {x^{2}}{2x}}\right)dx={\frac {x^{2}\ln(x)}{2}}{\bigg |}_{1}^{5}-{\frac {1}{2}}\int _{1}^{5}\left(x\right)dx={\frac {1\ln(1)}{2}}-{\frac {25\ln(5)}{2}}-\left({\frac {1}{2}}\right)\left({\frac {x^{2}}{2}}\right){\bigg |}_{1}^{5}=0-{\frac {25}{2}}\ln(5)-{\frac {1}{2}}\left({\frac {25-1}{2}}\right)={\frac {25}{2}}\ln(5)-6}