7.1 Integration By Parts/54: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 19: | Line 19: | ||
<math> | <math> | ||
\int_{1}^{5}\left(5\ln(x) -x\ln(x) \right)dx = {\color{ | \int_{1}^{5}\left(5\ln(x) -x\ln(x) \right)dx = {\color{NavyBlue}\int_{1}^{5} \left(5\ln(x) \right)dx} - \int_{1}^{5} \left(x\ln(x) \right)dx =25\ln(5)-20 - \left(\frac{25}{2}\ln(5) - 6 \right) = \frac{25}{2} \ln(5) -14 | ||
</math> | </math> | ||
Line 25: | Line 25: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
{\color{ | {\color{NavyBlue}\int_{1}^{5} \left(5\ln(x) \right)dx } &= 5 \int_{1}^{5} \left(\ln(x) \right)dx = 5\left(x\ln(x)\bigg|_{1}^{5}- \int_{1}^{5} \left(\frac{x}{x} \right)dx \right) = 5\left(x\ln(x) \bigg|_{1}^{5}- x \bigg|_{1}^{5} \right) = 5\left(5\ln(5)-1\ln(1) - \left(5-1 \right) \right) = 25\ln(5)-20 \\[2ex] | ||
u &= \ln(x) \quad dv= 1 dx \\ [2ex] | u &= \ln(x) \quad dv= 1 dx \\ [2ex] |
Revision as of 04:23, 29 November 2022