7.1 Integration By Parts/54: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 24: Line 24:


<math>
<math>
\begin{align}
\int_{1}^{5} \left(5\ln(x) \right)dx = 5 \int_{1}^{5} \left(\ln(x) \right)dx = 5\left(x\ln(x)\bigg|_{1}^{5}- \int_{1}^{5} \left(\frac{x}{x} \right)dx \right) = 5\left(x\ln(x) \bigg|_{1}^{5}- x \bigg|_{1}^{5} \right) = 5\left(5\ln(5)-1\ln(1) - \left(5-1 \right) \right) = 25\ln(5)-20
\int_{1}^{5} \left(5\ln(x) \right)dx = 5 \int_{1}^{5} \left(\ln(x) \right)dx = 5\left(x\ln(x)\bigg|_{1}^{5}- \int_{1}^{5} \left(\frac{x}{x} \right)dx \right) = 5\left(x\ln(x) \bigg|_{1}^{5}- x \bigg|_{1}^{5} \right) = 5\left(5\ln(5)-1\ln(1) - \left(5-1 \right) \right) = 25\ln(5)-20
</math>


<math>
\begin{align}
u &= \ln(x) \quad dv= 1 dx \\
u &= \ln(x) \quad dv= 1 dx \\
du &= \frac{1}{x} dx \quad  v=x \\
du &= \frac{1}{x} dx \quad  v=x \\

Revision as of 04:17, 29 November 2022