7.1 Integration By Parts/43: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 8: Line 8:
&= -\frac{1}{2} \cdot 2 \cdot \frac{1}{2}\sin(x)\cos(x) + \frac{x}{2} + c \\[2ex]
&= -\frac{1}{2} \cdot 2 \cdot \frac{1}{2}\sin(x)\cos(x) + \frac{x}{2} + c \\[2ex]
&= -\frac{1}{4}\sin(2x) + \frac{x}{2} + c \\[2ex]
&= -\frac{1}{4}\sin(2x) + \frac{x}{2} + c \\[2ex]
\end{align}
</math>
<math> \text{Now evaluate}\int\sin^4(x)dx </math>
<math>
\begin{align}
\int\sin^4(x)dx &= - \frac{1}{4}\cos(x)\sin^3(x) + \frac{3}{4} \int\sin^2(x)dx \\[2ex]
&= - \frac{1}{4}\cos(x)\sin^3(x) + \frac{3}{4}(-\frac{1}{4}\sin(2x) + \frac{x}{2}) \\[2ex]
&= - \frac{1}{4}\cos(x)\sin^3(x) - \frac{3}{16}\sin(2x) + \frac{3}{8}x + c \\[2ex]
\end{align}
\end{align}
</math>
</math>

Latest revision as of 02:16, 29 November 2022