7.1 Integration By Parts/43: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
&= -\frac{1}{2} \cdot 2 \cdot \frac{1}{2}\sin(x)\cos(x) + \frac{x}{2} + c \\[2ex] | &= -\frac{1}{2} \cdot 2 \cdot \frac{1}{2}\sin(x)\cos(x) + \frac{x}{2} + c \\[2ex] | ||
&= -\frac{1}{4}\sin(2x) + \frac{x}{2} + c \\[2ex] | &= -\frac{1}{4}\sin(2x) + \frac{x}{2} + c \\[2ex] | ||
\end{align} | |||
</math> | |||
<math> \text{Now evaluate}\int\sin^4(x)dx </math> | |||
<math> | |||
\begin{align} | |||
\int\sin^4(x)dx &= - \frac{1}{4}\cos(x)\sin^3(x) + \frac{3}{4} \int\sin^2(x)dx \\[2ex] | |||
&= - \frac{1}{4}\cos(x)\sin^3(x) + \frac{3}{4}(-\frac{1}{4}\sin(2x) + \frac{x}{2}) \\[2ex] | |||
&= - \frac{1}{4}\cos(x)\sin^3(x) - \frac{3}{16}\sin(2x) + \frac{3}{8}x + c \\[2ex] | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 02:16, 29 November 2022