7.1 Integration By Parts/43: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
\begin{align}
  <math>
  <math>
/begin{align}
 
\int\sin^2(x)dx &= - \frac{1}{2}\cos(x) \cdot \sin^{2-1}x + \frac{2-1}{2} \int\sin^{0}(x)dx </math> \\[2ex]
\int\sin^2(x)dx &= - \frac{1}{2}\cos(x) \cdot \sin^{2-1}x + \frac{2-1}{2} \int\sin^{0}(x)dx </math> \\[2ex]
&= -\frac{1}{2}\cos(x)\sin(x) + \frac{1}{2}x + c \\[2ex]
&= -\frac{1}{2}\cos(x)\sin(x) + \frac{1}{2}x + c \\[2ex]
&= -\frac{1}{2} \cdot 2 \cdot \frac{1}{2}\sin(x)\cos(x) + \frac{x}{2} + c \\[2ex]
&= -\frac{1}{2} \cdot 2 \cdot \frac{1}{2}\sin(x)\cos(x) + \frac{x}{2} + c \\[2ex]
&= -\frac{1}{4}\sin(2x) + \frac{x}{2} + c \\[2ex]
&= -\frac{1}{4}\sin(2x) + \frac{x}{2} + c \\[2ex]
/end{align}
 
</math>
</math>
\end{align}

Revision as of 00:17, 29 November 2022

\begin{align}

Failed to parse (syntax error): {\displaystyle   \int\sin^2(x)dx &= - \frac{1}{2}\cos(x) \cdot \sin^{2-1}x + \frac{2-1}{2} \int\sin^{0}(x)dx }
 \\[2ex]

&= -\frac{1}{2}\cos(x)\sin(x) + \frac{1}{2}x + c \\[2ex] &= -\frac{1}{2} \cdot 2 \cdot \frac{1}{2}\sin(x)\cos(x) + \frac{x}{2} + c \\[2ex] &= -\frac{1}{4}\sin(2x) + \frac{x}{2} + c \\[2ex]

</math> \end{align}