7.1 Integration By Parts/27: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
= <math>{\frac{\pi}{6}}-{(\frac{1}{2}}(2u^{\frac{1}{2}}))\bigg|_{1}^{\frac{3}{4}}</math> = <math>\frac{\pi}{6}-\frac{1}{2}(\sqrt{3}-1)</math> = <math>\frac{\pi}{6}-\frac{\sqrt{3}}{2}+1</math> = <math>\frac{1}{6}(\pi+6-3\sqrt{3})</math> | = <math>{\frac{\pi}{6}}-{(\frac{1}{2}}(2u^{\frac{1}{2}}))\bigg|_{1}^{\frac{3}{4}}</math> = <math>\frac{\pi}{6}-\frac{1}{2}(\sqrt{3}-1)</math> = <math>\frac{\pi}{6}-\frac{\sqrt{3}}{2}+1</math> = <math>\frac{1}{6}(\pi+6-3\sqrt{3})</math> | ||
<math>{u}</math> = <math>{\cos^{-1}(x)}</math> | |||
<math>{du}</math> = <math>{-sint}dt</math> | |||
<math>{-du}</math> = <math>{sint}dt</math> | |||
<math>{u}</math> = <math>{u}</math> , <math>{dv}</math> = <math>e^{u}du</math> | |||
<math>{du}</math> = <math>{du}</math> , <math>{v}</math> = <math>e^{u}</math> |
Revision as of 00:50, 27 November 2022
= = =
= = = =
=
=
=
= , =
= , =