7.1 Integration By Parts/27: Difference between revisions
No edit summary |
No edit summary |
||
| Line 2: | Line 2: | ||
<math>\int_{0}^{\frac{1}{2}}\cos^{-1}(x)dx</math> = <math>x\cos^{-1}(x)\bigg|_{0}^{\frac{1}{2}}+\int_{0}^{\frac{1}{2}}\frac{x}{\sqrt{1-x^2}}dx</math> = <math>(\frac{1}{2}\cdot\frac{\pi}{3}){-\frac{1}{2}}\int_{1}^{\frac{3}{4}}\frac{1}{\sqrt{u}}du</math> = <math>{\frac{\pi}{6}}-\frac{1}{2}\int_{1}^{\frac{3}{4}}u^{-\frac{1}{2}}du</math> | <math>\int_{0}^{\frac{1}{2}}\cos^{-1}(x)dx</math> = <math>x\cos^{-1}(x)\bigg|_{0}^{\frac{1}{2}}+\int_{0}^{\frac{1}{2}}\frac{x}{\sqrt{1-x^2}}dx</math> = <math>(\frac{1}{2}\cdot\frac{\pi}{3}){-\frac{1}{2}}\int_{1}^{\frac{3}{4}}\frac{1}{\sqrt{u}}du</math> = <math>{\frac{\pi}{6}}-\frac{1}{2}\int_{1}^{\frac{3}{4}}u^{-\frac{1}{2}}du</math> | ||
= <math>{ | = <math>{\frac{\pi}{6}}-{(\frac{1}{2}}(2u^{\frac{1}{2}}))\bigg|_{1}^{\frac{3}{4}}</math> = <math>\frac{\pi}{6}-\frac{1}{2}(\sqrt{3}-1)</math> = <math>\frac{\pi}{6}-\frac{\sqrt{3}}{2}+1</math> = <math>\frac{1}{6}(\pi+6-3\sqrt{3})</math> | ||
Revision as of 00:47, 27 November 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f'(x)= \int_{0}^{\frac{1}{2}}\cos^{-1}(x)\cdot dx }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{\frac{1}{2}}\cos^{-1}(x)dx}
= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x\cos^{-1}(x)\bigg|_{0}^{\frac{1}{2}}+\int_{0}^{\frac{1}{2}}\frac{x}{\sqrt{1-x^2}}dx}
= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (\frac{1}{2}\cdot\frac{\pi}{3}){-\frac{1}{2}}\int_{1}^{\frac{3}{4}}\frac{1}{\sqrt{u}}du}
= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\frac{\pi}{6}}-\frac{1}{2}\int_{1}^{\frac{3}{4}}u^{-\frac{1}{2}}du}
= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\frac{\pi}{6}}-{(\frac{1}{2}}(2u^{\frac{1}{2}}))\bigg|_{1}^{\frac{3}{4}}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\pi}{6}-\frac{1}{2}(\sqrt{3}-1)} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\pi}{6}-\frac{\sqrt{3}}{2}+1} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{1}{6}(\pi+6-3\sqrt{3})}