7.1 Integration By Parts/33: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\int(cos\sqrt{x})dx </math> = <math>2\sqrt{x}\int(cosu)du</math> = <math>2\int{u}(cosu)du</math> = <math>{2u}(sinu)-{2}\int(sinu)du</math> = <math>{2}\sqrt{x}(sin\sqrt{x})-(-2cosu)</math> = <math>{2}\sqrt{x}(sin\sqrt{x})+(2cos\sqrt{x})+{c} </math> | <math>\int(cos\sqrt{x})dx </math> = <math>2\sqrt{x}\int(cosu)du</math> | ||
= <math>2\int{u}(cosu)du</math> = <math>{2u}(sinu)-{2}\int(sinu)du</math> = <math>{2}\sqrt{x}(sin\sqrt{x})-(-2cosu)</math> = <math>{2}\sqrt{x}(sin\sqrt{x})+(2cos\sqrt{x})+{c} </math> | |||
Revision as of 01:48, 23 November 2022
= = = = =
=
=
=
=
=