5.5 The Substitution Rule/55: Difference between revisions
No edit summary |
No edit summary |
||
| Line 7: | Line 7: | ||
\begin{align} | \begin{align} | ||
u &= \frac{t}{4} | u &= \frac{t}{4} \\[2ex] | ||
du &= \frac{1}{4}dt \\[2ex] | du &= \frac{1}{4}dt \\[2ex] | ||
4du &=dx | 4du &=dx | ||
| Line 18: | Line 18: | ||
\begin{align} | \begin{align} | ||
\int_{0}^ | \int_{0}^{\pi} \sec^2\left(\frac{t}{4}\right)dt | ||
Revision as of 16:11, 4 October 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{\pi} \sec^2\left(\frac{t}{4}\right)dt }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \frac{t}{4} \\[2ex] du &= \frac{1}{4}dt \\[2ex] 4du &=dx \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{\pi} \sec^2\left(\frac{t}{4}\right)dt \end{align} }
= 4\cdot \tan^2(u) &= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex]