5.4 Indefinite Integrals and the Net Change Theorem/41: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>\begin{align}\int_{0}^\frac{1}\sqrt{3}\frac{t^2-1}{t^4-1} dt&=\int_{0}^\frac{1}\sqrt{3} \frac{(t^2-1)}{(t^2-1)(t^2+1)} dt=\int_{0}^\frac{1}\sqrt{3} \frac{1}{(t^2+1)}dt\\[2ex]&=\tan^{-1}{(t)}\bigg|_{0}^{\frac{1}{\sqrt{3}}}=\tan(\frac{1}{\sqrt{3}})^{-1}-[tan(0)^{-1}]\\[2ex]&=\frac{\pi}{6}-0=\frac{\pi}{6}
<math>\begin{align}\int_{0}^\frac{1}\sqrt{3}\frac{t^2-1}{t^4-1} dt&=\int_{0}^\frac{1}\sqrt{3} \frac{(t^2-1)}{(t^2-1)(t^2+1)} dt=\int_{0}^\frac{1}\sqrt{3} \frac{1}{(t^2+1)}dt\\[2ex]&=\tan^{-1}{(t)}\bigg|_{0}^{\frac{1}{\sqrt{3}}}=\tan^{-1}(\frac{1}{\sqrt{3}})^{-1}-[tan(0)^{-1}]\\[2ex]&=\frac{\pi}{6}-0=\frac{\pi}{6}
\end{align}</math>
\end{align}</math>

Revision as of 16:31, 21 September 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{0}^{\frac {1}{\sqrt {3}}}{\frac {t^{2}-1}{t^{4}-1}}dt&=\int _{0}^{\frac {1}{\sqrt {3}}}{\frac {(t^{2}-1)}{(t^{2}-1)(t^{2}+1)}}dt=\int _{0}^{\frac {1}{\sqrt {3}}}{\frac {1}{(t^{2}+1)}}dt\\[2ex]&=\tan ^{-1}{(t)}{\bigg |}_{0}^{\frac {1}{\sqrt {3}}}=\tan ^{-1}({\frac {1}{\sqrt {3}}})^{-1}-[tan(0)^{-1}]\\[2ex]&={\frac {\pi }{6}}-0={\frac {\pi }{6}}\end{aligned}}}