5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
= \int_{1}^{64}\left(x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}\right)dx = \int_{1}^{64}\left(x^{-\frac{1}{2}}+x^{-\frac{1}{6}}\right)dx
= \int_{1}^{64}\left(x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}\right)dx = \int_{1}^{64}\left(x^{-\frac{1}{2}}+x^{-\frac{1}{6}}\right)dx


</math>
= \int_{1}^{64}\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+ \frac{x^{\frac{5}{6}}}{\frac{5}{6}} = \int_{1}^{64}2x^\frac{1}{2} + \frac{6}{5}x^\frac{5}{6}


Add one to the exponents and divide by the new exponent


= <math>\int_{1}^{64}\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+ \frac{x^{\frac{5}{6}}}{\frac{5}{6}}</math> = <math>\int_{1}^{64}2x^\frac{1}{2} + \frac{6}{5}x^\frac{5}{6}</math>
</math>


=<math>2(x)^\frac{1}{2} + \frac{6}{5}(x)^\frac{5}{6}\bigg|_{1}^{64}</math>
=<math>2(x)^\frac{1}{2} + \frac{6}{5}(x)^\frac{5}{6}\bigg|_{1}^{64}</math>

Revision as of 16:18, 21 September 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{1}^{64}{\frac {1+{\sqrt[{3}]{x}}}{\sqrt {x}}}dx=\int _{1}^{64}\left({\frac {1}{x^{1/2}}}+{\frac {x^{1/3}}{x^{1/2}}}\right)dx=\int _{1}^{64}\left(x^{-1/2}+x^{{\frac {1}{3}}-{\frac {1}{2}}}\right)dx=\int _{1}^{64}\left(x^{-{\frac {1}{2}}}+x^{-{\frac {1}{6}}}\right)dx=\int _{1}^{64}{\frac {x^{\frac {1}{2}}}{\frac {1}{2}}}+{\frac {x^{\frac {5}{6}}}{\frac {5}{6}}}=\int _{1}^{64}2x^{\frac {1}{2}}+{\frac {6}{5}}x^{\frac {5}{6}}}

=Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 2(x)^\frac{1}{2} + \frac{6}{5}(x)^\frac{5}{6}\bigg|_{1}^{64}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 2(64)^\frac{1}{2} + \frac{6}{5}(64)^\frac{5}{6} - (2(1)^\frac{1}{2} + \frac{6}{5}(1)^\frac{5}{6})}

= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 16+38.4 - (2+1.2)}

= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 54.4 - 3.2} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 51.2}

= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{256}{5}}