5.4 Indefinite Integrals and the Net Change Theorem/29: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 5: | Line 5: | ||
&= \left[y^{4}-y^{-2}\right]_{-2}^{-1} \\[2ex] | &= \left[y^{4}-y^{-2}\right]_{-2}^{-1} \\[2ex] | ||
&= (1-1)-\left(16-\frac{1}{4}\right) \\[2ex] | &= (1-1)-\left(16-\frac{1}{4}\right) \\[2ex] | ||
&= \frac{ | &= -\frac{63}{4} | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 15:20, 21 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{-2}^{-1}\left(4y^3+\frac{2}{y^3}\right)dy &= \int_{-2}^{-1}\left(4y^3+2y^{-3}\right)dy\\[2ex] &= \left[y^{4}-y^{-2}\right]_{-2}^{-1} \\[2ex] &= (1-1)-\left(16-\frac{1}{4}\right) \\[2ex] &= -\frac{63}{4} \end{align} }