5.4 Indefinite Integrals and the Net Change Theorem/29: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>
<math>
\int_{2}^{-1}\left(4y^3+\frac{2}{y^3}\right)dy  
\begin{align}
= y^4-y^-2\bigg|_{-2}^{-1}
 
= (1-1)-\left(16-\frac{1}{4}\right)
\int_{-2}^{-1}\left(4y^3+\frac{2}{y^3}\right)dy \\[2ex]
= \frac{-63}{4}
&= \left[y^4-y^-2\right]_{-2}^{-1} \\[2ex]
&= (1-1)-\left(16-\frac{1}{4}\right) \\[2ex]
&= \frac{-63}{4}
 
\end{align}
</math>
</math>

Revision as of 15:17, 21 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{-2}^{-1}\left(4y^3+\frac{2}{y^3}\right)dy \\[2ex] &= \left[y^4-y^-2\right]_{-2}^{-1} \\[2ex] &= (1-1)-\left(16-\frac{1}{4}\right) \\[2ex] &= \frac{-63}{4} \end{align} }