5.4 Indefinite Integrals and the Net Change Theorem/25: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 5: | Line 5: | ||
&= \left(3u^3+3u^2+u\right)\bigg|_{-2}^{2} \\ [2ex] | &= \left(3u^3+3u^2+u\right)\bigg|_{-2}^{2} \\ [2ex] | ||
&= [3(2)^{3} + 3(2)^2 + 2] - [3- | &= [3(2)^{3} + 3(2)^2 + 2] - [3(-2)^3 + 3(-2)^2 -2] \\[2ex] | ||
&= {52} \\[2ex] | &= {52} \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 15:04, 21 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{-2}^{2}({3u+1})^2 du &= \int(9u^2+6u+1)du \\[2ex] &= \left(3u^3+3u^2+u\right)\bigg|_{-2}^{2} \\ [2ex] &= [3(2)^{3} + 3(2)^2 + 2] - [3(-2)^3 + 3(-2)^2 -2] \\[2ex] &= {52} \\[2ex] \end{align} }