6.1 Areas Between Curves/14: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 6: | Line 6: | ||
\begin{align} | \begin{align} | ||
& \color{purple}\mathbf{y=\cos(x)}, y=2-\cos(x)\\ | & \color{purple}\mathbf{y=\cos(x)}, \color{green}\mathbf{y=2-\cos(x)}\\ | ||
& \int_{0}^{2\pi} \left[2 - \cos(x) - \cos(x) \right]\mathrm{d}x = \int_{0}^{2\pi} \left[2 - 2\cos(x)\right]\mathrm{d}x\\ | & \int_{0}^{2\pi} \left[2 - \cos(x) - \cos(x) \right]\mathrm{d}x = \int_{0}^{2\pi} \left[2 - 2\cos(x)\right]\mathrm{d}x\\ | ||
&= \left[ 2x-2\sin(x) \right]\bigg|_{0}^{2\pi}\\ | &= \left[ 2x-2\sin(x) \right]\bigg|_{0}^{2\pi}\\ | ||
Latest revision as of 19:38, 20 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} & \color{purple}\mathbf{y=\cos(x)}, \color{green}\mathbf{y=2-\cos(x)}\\ & \int_{0}^{2\pi} \left[2 - \cos(x) - \cos(x) \right]\mathrm{d}x = \int_{0}^{2\pi} \left[2 - 2\cos(x)\right]\mathrm{d}x\\ &= \left[ 2x-2\sin(x) \right]\bigg|_{0}^{2\pi}\\ &= \left(4\pi - 0 \right) - \left(0\right)\\ &= 4\pi \end{align} }