5.5 The Substitution Rule/37: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 21: Line 21:


&= \int \frac{1}{{u}}(du) \\[2ex]
&= \int \frac{1}{{u}}(du) \\[2ex]
\text{Note: } \int \frac{1}{{x}}\;dx= \ln(x)+C \\[2ex]
&= \left| \ln(u) \right| + C \\[2ex]
&= \left| \ln(u) \right| + C \\[2ex]
&= \left| \ln(\sin(x)) \right| + C \\[2ex]
&= \left| \ln(\sin(x)) \right| + C \\[2ex]

Latest revision as of 19:18, 20 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int \cot(x)dx = \int \frac{\cos(x)}{\sin(x)}dx }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \sin(x) \\[2ex] du &= \cos(x)\;dx \\[2ex] \end{align} }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int \frac{\cos(x)}{\sin(x)}dx &= \int \frac{1}{\sin(x)}\cos(x)\;dx = \int \frac{1}{\sin(x)}(\cos(x)\;dx) \\[2ex] &= \int \frac{1}{{u}}(du) \\[2ex] &= \left| \ln(u) \right| + C \\[2ex] &= \left| \ln(\sin(x)) \right| + C \\[2ex] \end{align} }