6.1 Areas Between Curves/10: Difference between revisions
No edit summary |
No edit summary |
||
| Line 28: | Line 28: | ||
<math> \int_{0}^{9} \left(1+\sqrt{x} - \frac{3+x}{3}\right)dx = | <math> \int_{0}^{9} \left(1+\sqrt{x} - \frac{3+x}{3}\right)dx = x + \frac{2x^\frac{3}{2}}{3} | ||
Revision as of 16:24, 20 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} & \color{red}\mathbf{y=1+\sqrt{x}} & \color{royalblue}\mathbf{y=\frac{3+x}{3}} \\ \\ \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} &1+\sqrt{x} = \frac{3+x}{3} \\ & 1+\sqrt{x}-\frac{3+x}{3} = 0 \\ & \frac{3+3\sqrt{x}}{3}-\frac{3+x}{3} = 0 \\ & 3+3\sqrt{x}-3+x = 0 \\ & 3\sqrt{x}+x = 0 \\ & 3\sqrt{x} = -x \\ & 9x = x^2 \\ & 9x-x^2 = 0 \\ & x(9-x) = 0 \\ & x = 0,9 \end{align} }
<math> \int_{0}^{9} \left(1+\sqrt{x} - \frac{3+x}{3}\right)dx = x + \frac{2x^\frac{3}{2}}{3}