5.5 The Substitution Rule/21: Difference between revisions
No edit summary |
No edit summary |
||
| Line 17: | Line 17: | ||
\begin{align} | \begin{align} | ||
\int \frac{ | \int \frac{1}}{\sqrt{t}}\cos{(\sqrt{t}) dt &= 2\int \cos {u}\;du \\[2ex] | ||
&= 2 \sin{u}+c \\[2ex] | &= 2 \sin{u}+c \\[2ex] | ||
&= 2 \sin(\sqrt{t}) + c \\[2ex] | &= 2 \sin(\sqrt{t}) + c \\[2ex] | ||
Revision as of 23:24, 13 September 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int {\frac {\cos {({\sqrt {t}})}}{\sqrt {t}}}\;dt}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \sqrt{t} \\[2ex] du &= \frac{1}{2}\ \frac{1}{\sqrt{t}}\;dt \\[2ex] 2du &= \frac{1}{\sqrt{t}}\;dt \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int \frac{1}}{\sqrt{t}}\cos{(\sqrt{t}) dt &= 2\int \cos {u}\;du \\[2ex] &= 2 \sin{u}+c \\[2ex] &= 2 \sin(\sqrt{t}) + c \\[2ex] \end{align} }