5.5 The Substitution Rule/65: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 18: | Line 18: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\int_{1}^{2} x \sqrt{x-1} dx &= \int_{0}^{1} u+1 \sqrt{u}\,du = \int_{0}^{1}(u + 1)(\sqrt{u}) = \int_{0}^{1} u^ \frac{3}{2} + \sqrt{u}du \\[2ex] | \int_{1}^{2} x \sqrt{x-1} dx &= \int_{0}^{1} (u+1) \sqrt{u}\,du = \int_{0}^{1}(u + 1)(\sqrt{u}) = \int_{0}^{1} u^ \frac{3}{2} + \sqrt{u}du \\[2ex] | ||
&= \frac{2}{5} U^\frac{5}{2} + \frac{2}{3} U^\frac{3}{2}| _{0}^{1} =\frac{2}{5} + \frac{2}{3} \\[2ex] | &= \frac{2}{5} U^\frac{5}{2} + \frac{2}{3} U^\frac{3}{2}| _{0}^{1} =\frac{2}{5} + \frac{2}{3} \\[2ex] | ||
&= \frac{16}{15}\\[2ex] | &= \frac{16}{15}\\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 22:54, 13 September 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{1}^{2}x{\sqrt {x-1}}dx&=\int _{0}^{1}(u+1){\sqrt {u}}\,du=\int _{0}^{1}(u+1)({\sqrt {u}})=\int _{0}^{1}u^{\frac {3}{2}}+{\sqrt {u}}du\\[2ex]&={\frac {2}{5}}U^{\frac {5}{2}}+{\frac {2}{3}}U^{\frac {3}{2}}|_{0}^{1}={\frac {2}{5}}+{\frac {2}{3}}\\[2ex]&={\frac {16}{15}}\\[2ex]\end{aligned}}}