5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions
No edit summary |
No edit summary |
||
| Line 21: | Line 21: | ||
\tan{x}+C | \tan{x}+C | ||
</math> | </math> | ||
Note:<math>\cos^2\alpha+sin^2\alpha=1</math> | |||
Revision as of 17:49, 13 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int(1+\tan^2{\alpha})\,d\alpha = \int\sec^2\alpha \,d\alpha = \tan\alpha + C }
Note: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1+\tan^2{\alpha} = \sec^2\alpha}
Or,
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int (1+\tan ^{2}{\alpha })\,d\alpha =\int \left(1+{\frac {sin^{2}\alpha }{cos^{2}\alpha }}\right)d\alpha =\int \left({\frac {cos^{2}\alpha +sin^{2}\alpha }{cos^{2}\alpha }}\right)d\alpha \cos ^{2}x+sin^{2}x=1\int {\frac {1}{cos^{2}x}}dx=\int \sec ^{2}xdx=\tan {x}+C}
Note:Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \cos^2\alpha+sin^2\alpha=1}