5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 21: Line 21:
\tan{x}+C
\tan{x}+C
</math>
</math>
Note:<math>\cos^2\alpha+sin^2\alpha=1</math>

Revision as of 17:49, 13 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int(1+\tan^2{\alpha})\,d\alpha = \int\sec^2\alpha \,d\alpha = \tan\alpha + C }


Note: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1+\tan^2{\alpha} = \sec^2\alpha}


Or,

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int (1+\tan ^{2}{\alpha })\,d\alpha =\int \left(1+{\frac {sin^{2}\alpha }{cos^{2}\alpha }}\right)d\alpha =\int \left({\frac {cos^{2}\alpha +sin^{2}\alpha }{cos^{2}\alpha }}\right)d\alpha \cos ^{2}x+sin^{2}x=1\int {\frac {1}{cos^{2}x}}dx=\int \sec ^{2}xdx=\tan {x}+C}

Note:Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \cos^2\alpha+sin^2\alpha=1}