5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>\int_{}^{}1+tan^2xdx =  
<math>
\int(1+\tan^2{\alpha})\,d\alpha = \int\sec^2\alpha \,d\alpha = \tan\alpha + C
</math>
 
OR
 
<math>
 
\int_{}^{}1+tan^2xdx =  


\int_{}^{}1+\frac{sin^2x}{cos^2x}dx =  
\int_{}^{}1+\frac{sin^2x}{cos^2x}dx =  

Revision as of 17:45, 13 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int(1+\tan^2{\alpha})\,d\alpha = \int\sec^2\alpha \,d\alpha = \tan\alpha + C }

OR

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}1+tan^2xdx = \int_{}^{}1+\frac{sin^2x}{cos^2x}dx = \int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx \cos^2x+sin^2x=1 \int_{}^{}\frac{1}{cos^2x}dx = \int_{}^{}\sec^2xdx = tanx+C }