5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
17)<math>\int_{}^{}1+tan^2xdx | 17)<math>\int_{}^{}1+tan^2xdx = | ||
\int_{}^{}1+\frac{sin^2x}{cos^2x}dx = | |||
\int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx | |||
\cos^2x+sin^2x=1 | |||
\int_{}^{}\frac{1}{cos^2x}dx = | |||
\int_{}^{}\sec^2xdx = | |||
tanx+C | |||
</math> | |||
Revision as of 17:41, 13 September 2022
17)Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}1+tan^2xdx = \int_{}^{}1+\frac{sin^2x}{cos^2x}dx = \int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx \cos^2x+sin^2x=1 \int_{}^{}\frac{1}{cos^2x}dx = \int_{}^{}\sec^2xdx = tanx+C }