5.4 Indefinite Integrals and the Net Change Theorem/5: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>\int_{}^{}\left(x^2+x^-2\right)dx</math>
<math>\int_{}^{}\left(x^2+x^(-2)\right)dx


=<math>\int_{}^{}\left((x^2)dx)+((x^-2\right)dx)</math>
=\int_{}^{}\left((x^2)dx)+((x^-2\right)dx)


=<math>\frac{x^3}{3}+\frac{x^-1}{-1}+C</math>
=\frac{x^3}{3}+\frac{x^-1}{-1}+C


=<math>\frac{1}{3}x^3-\frac{1}{x}+C</math>
=\frac{1}{3}x^3-\frac{1}{x}+C
 
</math>

Revision as of 17:19, 13 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}\left(x^2+x^(-2)\right)dx =\int_{}^{}\left((x^2)dx)+((x^-2\right)dx) =\frac{x^3}{3}+\frac{x^-1}{-1}+C =\frac{1}{3}x^3-\frac{1}{x}+C }