5.4 Indefinite Integrals and the Net Change Theorem/25: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
= {3u^3+3u^2+u}\bigg|_{-2}^{2} \\[2ex]
= {3u^3+3u^2+u}\bigg|_{-2}^{2} \\[2ex]


= {3\cdot 2^3 + \cdot 2^2 +2 - 3\cdot -2^3 + 3 \cdot-2^2 -2} \\[2ex]
&= {3\cdot 2^3 + \cdot 2^2 +2 - 3\cdot -2^3 + 3 \cdot-2^2 -2} \\[2ex]


= {52}  
&= {52}  


\end{align}
\end{align}
</math>
</math>

Revision as of 17:40, 7 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{-2}^{2}({3u+1})^2 du = \int {3u^2+6u+1} {du} \\[2ex] = {3u^3+3u^2+u}\bigg|_{-2}^{2} \\[2ex] &= {3\cdot 2^3 + \cdot 2^2 +2 - 3\cdot -2^3 + 3 \cdot-2^2 -2} \\[2ex] &= {52} \end{align} }