5.5 The Substitution Rule/27: Difference between revisions
No edit summary |
No edit summary Tag: Manual revert |
||
| Line 16: | Line 16: | ||
\begin{align} | \begin{align} | ||
\int \cfrac{z^2}{\sqrt[3]{1+z^3}} dz &= \frac{1}{3}\int\frac{1}{\sqrt[3]{u}}du | \int \cfrac{z^2}{\sqrt[3]{1+z^3}} dz &= \frac{1}{3}\int\frac{1}{\sqrt[3]{u}}du = \frac{1}{3}\int\{u}^-\frac{1}{3}du \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 16:24, 7 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int \cfrac{z^2}{\sqrt[3]{1+z^3}} dz }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &=1+{z}^3 \\[2ex] du &=3{z}^2dz \\[2ex] \frac{1}{3}du &={z}^2dz \\[2ex] \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int \cfrac{z^2}{\sqrt[3]{1+z^3}} dz &= \frac{1}{3}\int\frac{1}{\sqrt[3]{u}}du = \frac{1}{3}\int\{u}^-\frac{1}{3}du \\[2ex] \end{align} }